
Hyperbolic Geometry Homework 2

Name: Answer Rubric

1. (12 points) Verify that the following picture describes the effect of kθ on the imaginary axis when
0 < θ < π/2. That is, verify that all the lengths and intersection points are correct. What is the
slope of the tangent line? What is the angle formed between the imaginary axis and its image under
kθ?

Solution: Since 0 < θ < π/2, tan θ and cot θ are both strictly positive. We know that the image
of the imaginary axis is the circle with limit points − tan θ and cot θ by a previous exercise (2
points) (where we computed the circle for ANY element of SL2(R).) More than that, we know
the imaginary part of kθ(it) is y = t

t2 sin2 θ+cos2 θ
= t

(t2−1) sin2 θ+1
(2 points) and the real part is

x = cot θ(1− 1
(t2−1) sin2 θ+1

) (2 points).

Now we determine the tangent line at t = 1, i.e. dy
dx when x = 0 and y = 1. We can readily

compute that
dy

dt
=

(−t2 − 1) sin2 θ

[(t2 − 1) sin2 θ + 1]2
,

and that
dx

dt
=

2t cot θ sin2 θ

[(t2 − 1) sin2 θ + 1]2
=

t sin(2θ)

[(t2 − 1) sin2 θ + 1]2
.

Therefore by the chain rule, dy
dx = (−t2−1 sin2 θ+1)

t sin(2θ) . At t = 1 the numerator reduces to −2 sin2 θ+

1 = cos2 θ − sin2 θ = cos(2θ). Therefore the slope of our tangent line is cot(2θ) (4 points).
There are many ways to find this, e.g. by finding the equation of the circle and doing implicit
differentiation or using some classical Euclidean trigonometry. Any way that is correct should
receive all points. Take off no more than two points for algebra errors (and there must be
distinct algebra errors in distinct steps to do so). Give at most 2 points if there is an error in
the definition of a tangent line. Do not take away any points in this section if there was an error
in finding x or y before any attempt to find the tangent line.

Once we know the tangent line has slope cot(2θ), we know that the intercept with the real
axis is at − tan(2θ) (1 points). If we take the Euclidean right triangle formed by the real and



imaginary axes and the tangent line, we see it has vertices (0, 0), (− tan 2θ, 0), and (0, 1). We
can read off that the angle between the imaginary axis and the tangent line has adjacent side
length 1 and opposite side length tan(2θ) so by vertical angles the angle is 2θ (1 points).

2. (7 points) Compute the hyperbolic area of the triangle with vertices −
√

3 + i,
√

3 + i, and ∞.

Solution: The triangle is the region enclosed by the circle of radius 2, and the lines with real
part ±

√
3 (1 point). The angle at ∞ is always 0 (1 point). Since this is symmetric about the

imaginary axis, the angles at the finite vertices are equal, so it suffices to find the angle at
√

3+i.
The radius at this point is given by the line y = 1√

3
x and the tangent line is perpendicular to

this line. Therefore the tangent line has slope −
√

3 and the intercept with the real axis is at√
3 + 1/

√
3. In particular, by vertical angles, the angle β at

√
3 + i has tangent 1/

√
3 and is

thus π/6 (2 points).

Therefore, by Gauss-Bonnet, the area is π − 2(π/6) = 2π/3 (3 points). Alternately, one could

award 3 points for acting by

(
1/
√

2 0

0
√

2

)
to go from the circle of radius 2 to the unit

circle and then 5 points for mimicing the proof from class - 2 for realizing that the limits of
integration are π/6 ≤ x ≤ 5π/6 and 3 for computing the rest correctly. Hopefully you resisted
the temptation to make everything look like the picture above - this would require looking at
θ = π/12, which is not one of the normally used trigonometric values.

3. (8 points) Give a continuous, surjective group homomorphism f : R → SO2(R) with kernel 2πZ.
Conclude that f induces an isomorphism of topological groups (in particular, a homeomorphism and
a group isomorphism) between R/2πZ and SO2(R). Hint: If you do not use the angle addition
formulas at any point, you’re probably doing this exercise incorrectly.

Solution: Clearly the map θ 7→ kθ is the one we seek. To say that this is a homomorphism
would be to say that if α, β ∈ R then kαkβ = kα+β . Therefore we compute kαkβ to be(

cosα − sinα
sinα cosα

)(
cosβ − sinβ
sinβ cosβ

)
=

(
cosα cosβ − sinα sinβ − sinα cosβ − cosα sinβ
sinα cosβ + cosα sinβ cosα cosβ − sinα sinβ

)
.

The angle addition formulas tell us that cos(α+ β) = cosα cosβ − sinα sinβ and sin(α+ β) =
sinα cosβ+ cosα sinβ so we see that this is a homomorphism (2 points). Moreover, since both
the sine and cosine functions are continuous on R, we have a continuous map f : R→M2(R) ∼=
R4 landing in SO2(R) (2 points). Now we just need to verify that the kernel is exactly 2πZ.

Of course the trig functions are 2π-periodic so for all n ∈ Z, k2πn = k0 =

(
1 0
0 1

)
. Therefore

the kernel contains 2πZ. To show there is nothing else in the kernel we need to show that if
θ 6∈ 2πZ that kθ is not the identity. For that, it suffices to show that cos(θ) = 1 only if θ ∈ 2πZ,
and this is obvious just from looking at the graph of cos : R→ R (2 points).

Therefore, consider f̄ : R/2πZ→ SO2(R) where f̄(θ+ 2πZ) = f(θ) = kθ. Since f is continuous
and surjective, f̄ is also continuous and surjective, but it is also injective. Therefore, there is a
continuous inverse homomorphism kθ 7→ θ+ 2πZ and f̄ is an isomorphism of topological groups
(2 points). We can even explicitly see this (not a part of the question, but I think it’s useful

anyway!): if A =

(
a b
c d

)
∈ SO2(R) then a2 + c2 = 1 so the point a + ic lies on the unit

circle. The Euclidean distance along the unit circle from (1, 0) to (a, c) is a continuous function
of a and c (even differentiable - it’s an arc length integral). This is our θ. Alternately we can
explicitly see this as values of arccos(a) = arcsin(c) on different domains.
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