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1 Lecture I: Motivation and Basic definitions

It is an unfortunate truth that if you tell someone that you are studying mathe-
matics, they may suddenly decide to ask if “someone didn’t figure that out years
ago,” or about “the applications of your work.” Especially with pure mathemat-
ics, it can be difficult to convey why you feel that your work is important, so
I try to reframe the question in terms of the history of mathematics and sci-
ence. Lately, the effects of even a breakthrough in pure mathematics have taken
something like 100 years to see in the outside world. I’m fond of the example of
GPS and Riemannian Geometry. The GPS that gets you around in a car was
developed in the 1960s and 1970s by the US government and made available
for unrestricted usage on the 2nd of May, 2000. Managing the GPS satellites
would not be possible without the development of Einstein’s general relativity,
which celebrates its 100th birthday on November 18. But similarly to how GPS
would not be possible without general relativity, the language of general rela-
tivity is that of Riemannian Geometry [4], whose basic structure was laid out
by Riemann in a posthumous publication in 1867 [3]. So it may be quite a while
before your great ideas make an impact on the world!

This course will focus on a precursor of even that idea. Before you can talk
about a space with a curvature on it, you have to understand in a deep way what
it means for a space’s geometry to be anything other than the flat geometry of
Euclid’s Elements. This is something that I would call a big idea of modern
mathematics, and amateur attempts to understand it have been known to end
with literal Lovecraftian horror [2, Chapter 3]. Our approach will be the simple
study of distances and angles on the hyperbolic upper half plane, which we will
refer to as H and define as follows.

Let C = R+iR be the complex numbers where i is a fixed choice of a square
root of −1. We may arrange R ⊂ C as the horizontal axis in the real Euclidean
plane and iR as the vertical axis. Recall formula for the length of an arc in the
plane.

Definition 1. We say that an arc in a topological space U is the image of a
continuous map

γ : [0, 1]→ U.
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We say that the length of an arc in the plane is

∫
γ

ds =

∫
γ

√
dx2 + dy2 =

∫ 1

0

√(
dx(γ)

dt

)2

+

(
dy(γ)

dt

)2

dt.

It requires a proof to show that this definition conforms to our intuition,
but that just comes down to the Pythagorean theorem. We say here that ds is
the metric on the topological space R2. We say that the pair (R2,ds) is the
Euclidean plane. One topic we will explore in this class is how much can change
if we change the metric and how much we can do even without a metric.

Definition 2. As a topological space, let H ⊂ R2 ∼= C be the subspace of
complex numbers x+ iy with y > 0. We say that that Poincare upper half-plane

is the space H together with the metric

√
dx2 + dy2

y
.

So what does this mean? Informally, this just means that things get closer
together as we go upwards and further apart as we go downwards and closer to
the line y = 0. More precisely, this means that what we think of as a straight
line is going to change.

Definition 3. An arc γ in a topological space U with a metric dm is called
geodesic if it is the shortest path between two points a = γ(0) and b = γ(1).
That is to say that for any other path γ′ in U with γ′(0) = a and γ′(1) = b that
the length `(γ′) satisfies `(γ′) ≥ `(γ).

Example 1. In the Euclidean plane (R2,ds), the geodesics lie on “straight
lines.”

Example 2. On the sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} with the usual
Euclidean metric (restricted to the sphere!), the geodesics lie on great circles.

In our next lecture, we will see that the geodesics in H lie on vertical lines
and on semicircles whose center lies on the line y = 0. But for now, let’s take
a moment to wonder why we’re calling this a metric and what the difference is
to a metric space. It turns out we can define a metric using this “geodesic” or
“least length” notion.

Definition 4. If z, w ∈ H, we let ρ(z, w) be the infimum of the lengths of all
arcs γ with γ(0) = z and γ(1) = w. We say that ρ(z, w) is the hyperbolic
distance between z and w.

Since this ρ is non-negative, symmetric, and satisfies the triangle inequality,
it is a metric in the normal sense.

Definition 5. We say that a continuous function f : H → H is an isometry if
it preserves the hyperbolic distance. That is to say, for all z, w ∈ H, ρ(z, w) =
ρ(f(z), f(w)).

2



2 Lecture 2: Linear Fractional Transformations

One of the great uses for topological spaces is the theory of group actions.

Definition 6. We say that a group G acts on a set X if for all g ∈ G, x ∈ X,
there is an element g ·x ∈ X such that if g, h ∈ G, x ∈ X then g ·(h ·x) = (gh) ·x
and the identity element of G fixes each element of X.

If a group G acts nicely on a set X, that tells us something useful about the
group G. Of course by nice, it’s not enough to use the action g · x = x for all
g ∈ G and x ∈ X.

Last time we defined isometries, or transformations which preserve distance.
The simplest example of these are affine linear transformations R→ R. Given
a ∈ R× and b ∈ R, consider the transformation sending x ∈ R to ax+b. Which
of these preserve the usual distance? Of course the ones with a = ±1.

Consider now a, b, c, d ∈ R and z ∈ H. We can try and make a distance-

preserving map H → H sending z to w =
az + b

cz + d
. We run into an obvious

problem if ad = bc (and c 6= 0, something similar occurs if a 6= 00:

az + b

cz + d
=

acz + bc

c(cz + d)
=
a(cz + d)

c(cz + d)
=
a

c
.

A map which collapses H to a point sends all distances to zero, and of
course does not preserve distances. Therefore we assume ad 6= bc, or in terms
that may be useful for us later, ad− bc ∈ R×. If we express this transformation

as a matrix

(
a b
c d

)
, the group of these is called GL2(R). We use this nota-

tion because these are not just affine linear transformations, but general linear
transformations.

Another obvious thing to check is that this map sends H to H, i.e. that
=(w) = w−w̄

2i > 0. We see clearly that

w =
az + b

cz + d
=
ac|z|2 + adz + bcz̄ + bd

|cz + d|2
.

It follows that

=(w) =
(ad− bc)(z − z̄)

2i|cz + d|2
= (ad− bc) =(z)

|cz + d|2
.

Since =(z) > 0 and |cz + d|2 > 0, the linear fractional transformation A =(
a b
c d

)
sends H to H if and only if ad − bc > 0. The quantity ad − bc is

called the determinant of the matrix A and the set of matrices A with det(A) > 0
forms a group, which we may denote as GL+

2 (R).
Each element of GL+

2 (R) defines a map from H to itself, which is continuous
because polynomial maps and their quotients are continuous wherever they are
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defined. Finally, since GL+
2 (R) is a group, each element has an inverse, and so

each element of GL+
2 (R) defines a homeomorphism from H to itself.

Alternately, we could just consider the matrices which have ad − bc = 1.
These also form a group, which we call the special linear group or SL2(R).

Lemma 1. A linear fractional transformation of H given by A ∈ SL2(R) is an
isometry.

Proof. Let γ : [0, 1]→ H be a path and A(γ) the image of that path under the
transformation A. Let w(t) = u(t) + iv(t) = A(γ)(t) so the length of A(γ) is∫ 1

0

√
( du

dt )2+( dv
dt )2dt

v .

We note that |dw|2 = dwdw = (du + idv)(du − idv). Therefore |dw| =
√

du2 + dv2 so the length of γ is
∫ 1

0

| dw
dt |dt
=(w) .

We compute via the quotient rule that

|dw
dt
| =

∣∣∣∣dwdz dz

dt

∣∣∣∣ =

∣∣∣∣a(cz + d)− c(az + b)

(cz + d)2

dz

dt

∣∣∣∣ =

∣∣∣∣ (ad− bc)(cz + d)2

dz

dt

∣∣∣∣ =
|dzdt |

|cz + d|2
.

Recall then that =(w) = =(z)
|cz+d|2 , so

∫ 1

0

|dwdt |dt
=(w)

=

∫ 1

0

|dzdt |dt
=(z)

.

Therefore the length of γ is the length of A(γ).

We therefore find that SL2(R) acts on H, not just continuously, but by
isometries. This group action is nicer in other ways as well: It is transitive in
that any point of H can be moved to any other point by an element of SL2(R).

Lemma 2. The action of SL2(R) on H is transitive.

Proof. Let α + βi, α′ + β′i ∈ H. We want to construct a matrix M taking
α′ + β′i to α+ βi. For simplicity, we assume that (α′, β′) = (0, 1) because if A
is a matrix that takes i to α + βi and B takes i to α′ + β′i then M = B−1A
works.

Now if β = 1 then this is easy. Just take the matrix

(
β α
0 1

)
. In general

though, this matrix need not have determinant one because we only know that
β ∈ R>0. We can correct this however - divide everything by

√
β! Then A =(

β/
√
β α/

√
β

0 1/
√
β

)
has determinant β/(

√
β

2
) = 1 and takes i to

βi√
β

+ α√
β

1√
β

=

α+ βi.

In fact, there is still a little more slack in this action as we will see in the
next lecture when we look at geodesics.
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3 Lecture 3: Linear fractional transformations
and geodesics

We saw last time that we could move any point to any other point, e.g. to i.
Let’s see how much slack we have left after doing so. That is, once we get to i,
which elements of SL2(R) keep us there?

Lemma 3. The elements of SL2(R) which fix i ∈ H form the subgroup

SO2(R) =

{(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
.

Proof. Suppose that T =

(
a b
c d

)
∈ SL2(R). We may easiy compute that

(
a b
c d

)
i =

ai+ b

ci+ d
=

(ad− bc)i+ bd+ ac

c2 + c2
=

i

c2 + d2
+
bd+ ac

c2 + d2
.

Therefore the isometry induced by T fixes i if and only if bd + ac = 0 and
c2 +d2 = 1. The latter equality together with the Pythagorean theorem tells us
that there is some θ ∈ R such that c = sin θ and d = cos θ. The former equality
now tells us that a sin θ + b cos θ = 0.

If cos θ 6= 0 we have b = −a tan θ. Since 1 = ad−bc = a(tan θ sin θ+cos θ), we
have cos θ = a(sin2 θ+cos2 θ). It follows that a = cos θ and therefore b = − sin θ.

On the other hand if d = cos θ = 0 then c = sin θ = ±1. Therefore a =
±a sin θ = 0 = cos θ and b = 1/c = ±1.

So what are we to make of this θ? Is there a way to see these matrices as a
sort of rotation? Yes, in fact it may be helpful to think of i as being the center of
a somewhat Dali-eqsue clock. If we pick a point a+ bi 6= i, this is like choosing
a minute hand, or rather a geodesic between i and a+ bi (whatever those look
like!). Acting by an element of SO2(R) rotates this minute hand. After doing
so, we may assume that a = 0.

Exercise 1. Find all the θ which move a+bi to the imaginary axis. Check that if
a2+b2 = 1, using θ = π/4 does the job, while otherwise 1

2 arctan(2a/(a2+b2−1))
does the job, moving a+ bi to the imaginary axis.

We may also assume that a+ bi is moved to an element ir with r > 1. After
all, if we take θ = 0, we get the isometry z 7→ −1/z which sends ir to i/r.

Lemma 4. The geodesics in H are all SL2(R)-equivalent to subsets of the imag-
inary axis {ir : r ∈ R>0}.

Proof. Let γ be a path in H with beginning point z and ending point w. Apply
an element M1 of SL2(R) to send z to i, and let a+ bi be the complex number
w is sent to. Then apply an element M2 of SO2(R) so that overall M = M2M1
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sends z to i and w to some ir for r > 1. Now let M(γ)(t) = u(t) + iv(t) and
consider that the length of γ is equal to the length of M(γ), so∫ 1

0

√
du2 + dv2

v
≥
∫ 1

0

dv

v
= ln(v(1))− ln(v(0)) = ln(v(1)).

Therefore, any path between z and w has length at least ln(v(1)). If we
can make a path of that length between z and w, that will be a geodesic. Let
σ(t) = i((1 − t) + tv(1)), the vertical line going from i to iv(1), which by the
above has length ln(v(1)). It follows that M−1(σ) is a geodesic arc between z
and w.

Now what do the geodesics on H look like? There are the obvious vertical

lines <(z) = r, which we can get by the matrix

(
1 r
0 1

)
or

(
r −1
1 0

)
. The

only other choices are half-circles centered on the real line: if cd 6= 0, then(
a b
c d

)
sends the imaginary axis to the semicircle with edges b/d, a/c on the

real line.

Exercise 2. Find the center, and radius of this half-circle. Find the highest
point on this half-circle and the preimage of that point on the imaginary axis.

But of course all of these things point to something that looks obvious in
hindsight: we need to consider the limits of elements in H. That is, we should
throw in real numbers, and if we rotate around our clock, there’s no good reason
to throw out ∞. Now we should be careful: in general you simply can’t treat
∞ like a number. You can however treat it like a point! And once we do
that, you may as well throw in the lower half plane as well, and consider linear
fractional transformations with arbitrary complex coefficients a, b, c, d ∈ C such
that ad− bc 6= 0. Then on this completed space C∪{∞}, the action of GL2(C)
is not just transitive, but 3-transitive in that any 3 points can be moved to any
3 other points (including the originals).

So for instance, if we wanted to move a point z1 to zero, we would use the
transformation z 7→ z − z1. If we wanted to move z1 to zero and z2 to ∞, we
would use the transformation z 7→ z−z1

z−z2 . If we additionally want to map z3 to
1, we use the transformation

z 7→ λ(z1, z2, z3, z) =
z − z1

z − z2

/
z3 − z1

z3 − z2

This quantity λ(z1, z2, z3, z4) is called the cross-ratio and it’s a useful tool for
coming up with linear transformations. For instance, if λ = λ(z1, z2, z3, z4) then
it is easy to compute that λ = λ(0,∞, 1, λ). Suppose now that z, w ∈ H and let
C be the half-circle (or vertical line) containing both of them. Let z∗ ∈ R ∪∞
be the endpoint closer to z and likewise w∗ for w. Then we may interpret the
distance between elements of H as

ρ(z, w) = ln(λ(z∗, w∗, z, w)).
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4 Lecture 4: The Unit Disc and the Iwasawa
decomposition

We have used linear fractional transformations with complex coefficients to an-
alyze the hyperbolic distance on the upper half plane. We now use them to give
another model of hyperbolic geometry.

Definition 7. The complex unit disc is the set D = {z ∈ C : |z| < 1}, together

with the metric 2|dz|
1−|z|2 .

Notice that just as distances get greater as you get closer in H to the real
line, distances get greater as you get closer in D to the unit circle. This model
is especially well-known from Escher’s tesselations. Note the geodesics pictured
are again the intersections of normal circles (or straight lines) with the unit disc.

Let’s see how we can see that this is another copy of the upper half plane.
Let f(z) = i z−iz+i . This map sends 0 to −i, 1 to 1, ∞ to i, and i to 0. In short,
it defines an invertible map f : H → D. It’s also easy to show that the metric
on D is given obtained from the usual metric on the upper half plane. Simply
compute dw

=w where w = iz+1
z+i .

That the unit disc can give the same model of hyperbolic geometry is an
incarnation of a very important theorem in complex analysis called Uniformiza-
tion. It essentially states that up to conformal equivalence, there are only 3 pos-
sible simply connected complex domains: the unit disc, the complex numbers,
and the Riemann sphere. As you might guess, linear fractional transformations
are conformal maps, and there are many criteria for being conformal, but in
particular a map is conformal if angles are preserved.

Let’s use this opportunity to think about angles in hyperbolic geometry.
Perhaps you have heard that we can get triangles in hyperbolic geometry with
an angle sum of less than 180 degrees. We will see this and much more, but
first we should see that linear fractional transformations preserve angles. We will
show this by proving a much bigger theorem that we’ve been slowly approaching.

Theorem 1 (The Iwasawa Decomposition). For any element A ∈ SL2(R),
there is an angle θ = θ(A), a positive real number λ = λ(A), and a real number
x = x(A) such that

A =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
λ 0
0 1/λ

)(
1 x
0 1

)
.

Proof. There will be a sketch here. For details, please see Keith Conrad’s hand-
out1.

Corollary 1. For any A ∈ SL2(R), the associated linear fractional transfor-
mation of H preserves angles.

1http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/SL(2,R).pdf
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Figure 1: Exercise picture

Proof. Let’s take two intersecting Euclidean straight lines and study what A

does to the angle between the two. Note that matrices of the form

(
1 x
0 1

)
simply move lines left and right. Moreover, any non-vertical line can be given

in the form y = ax+ b. Matrices of the form

(
λ 0
0 1/λ

)
send z to λ2z. That

is, x to λ2x and y to λ2y. If y = ax+b then after acting by this linear fractional
transformation we have y = ax+ b/λ2. This is to say, the slopes of the two lines
have not changed and so the angle between them has also not changed.

Now let P be the intersection point of two lines with angle α between them
so we can study the resulting angle at A(P ). In fact, we can use a matrix M

which is the product of matrices of the form

(
1 x
0 1

)
and

(
λ 0
0 1/λ

)
to

move back to P . That is, MA(P ) = P and MA has the same effect on the
angle α as A has. In fact, let N be a matrix formed in the same way as M , but
such that N(P ) = i. Then the angle α at P is just a translate under N−1 of
the same angle at i. We know that NMAN−1 fixes i (so lies in SO2(R)) and
has the same effect on the angle α at i as A does at P . So we’re done if we
interpret the lines forming the angle α as tangent lines to geodesic circles and
we know the effect of SO2(R).

In fact, since the geodesics going through i are all equivalent under SO2(R),
it suffices to see what the angle is between the imaginary axis, and the tangent

line at i to the image under the imaginary axis under kθ =

(
cos θ − sin θ
sin θ cos θ

)
.

In fact, if we can prove the following exercise, we can show the angle is 2θ.

Exercise 3. Show that the lengths in the following picture are accurate if the
semicircle is the image of the positive imaginary axis under kθ.
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See also Keith Conrad’s handout for a proof that SL2(R) is homeomorphic
to a solid torus and H ∼= SL2(R)/SO2(R).

5 Lecture 5: Hyperbolic trigonometry

We will now study the properties of hyperbolic triangles. In the same way that
a regular triangle is formed by taking the straight lines between 3 points in the
plane, hyperbolic triangles are the same, mutatis mutandis. But here, we have
an easily-defined boundary, and we can extend our definition to this boundary
as follows.

Definition 8. A hyperbolic triangle is formed by 3 vertices, which are distinct
points in H, together with 3 edges, which are all the hyperbolic geodesics arcs
between these 3 points. An ideal hyperbolic triangle is the same, but the vertices
can also be ∞ or any point in R.

The angles between two geodesics are given simply as the angles between
the tangent lines of these geodesics, and there is one more key ingredient to
studying hyperbolic trigonometry.

Lemma 5. The area of a region R ⊂ H is
∫∫
R

dxdy
y2 .

Proof. This is an exercise. Explain why it suffices to check this on Euclidean
rectangles [a, b]× [c, d] and then do so by usual integration.

Example 3. Let’s see how far we can push this idea of an ideal triangle. Can
we have a triangle with all points on the boundary? Of course! Let the 3 vertices
be ∞, 1, and −1, so the edges are the lines x = 1, x = −1, and the top half of
the unit circle.

What is the area of this triangle? Well of course it is∫ 1

−1

dx

∫ ∞
√

1−x2

dy

y2
=

∫ 1

−1

dx√
1− x2

=

∫ 0

π

d(cos θ)

sin θ
=

∫ π

0

dθ = π.

More generally, if the edges of an ideal triangle are given by the unit circle,
x = a, and x = b for −1 ≤ a < b ≤ 1 then the area is arccos(a) − arccos(b) by
the above calculation.

Let the interior angle at b + i
√

1− b2 be β and the interior angle at a +
i
√

1− a2 be α. We check with a little bit of standard Euclidean trigonometry
that arccos(b) = β and arccos(a) = π−α. Therefore in terms of interior angles,
the area of our triangle with a vertex at ∞ is π−α−β. In fact, it’s easy to see
that the angle at ∞ is zero as well - act by the linear fractional transformation
−1/z and recall that linear fractional transformations preserve angles. So any
of these ideal triangles with interior angles {α, β, γ} has area π − α− β − γ.

If this held true for all hyperbolic triangles, that would very precisely say how
any hyperbolic triangle has angle sum less than π radians.
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Let’s think of how we can reduce all triangles to the above example. Since
the hyperbolic metric is preserved by the action of SL2(R), the hyperbolic area
ought to be as well. More precisely, we know from multivariable calculus that

if f(x, y) = (u, v) then dudu =
(
∂u
∂x

∂v
∂y −

∂u
∂y

∂v
∂x

)
dxdy.

If (u, v) = f(x, y) = f(x+ iy) = u+ iv has a complex derivative at a point
z0 in H then

f ′(z0) =
∂u

∂x
(z0) + i

∂v

∂x
(z0) =

∂v

∂y
(z0)− i∂u

∂y
(z0).

Exercise 4. Prove this. As a hint, let z0 = x0 + iy0. Take the real two-variable
directional derivatives along the horizontal line y = y0 and along the vertical
x = x0. What should be true there and why?

If our function f is a linear fractional transformation, then it has a complex

derivative. In fact, if it’s given by T =

(
a b
c d

)
∈ SL2(R), then the derivative

is f ′(z) = 1
(cz+d)2 and so the Jacobian factor is |f ′(z)|2 = 1

|cz+d|4 . Therefore,∫∫
T (R)

dudv

v2
=

∫∫
R

| cz + d |4

y2

dxdy

| cz + d |4
=

∫∫
R

dxdy

y2
.

Now we can prove the following.

Theorem 2 (Gauss-Bonnet). The area of a hyperbolic triangle or ideal hyper-
bolic triangle with interior angles {α, β, γ} is π − α− β − γ.

Proof. First, we assume that we have at least one vertex in R ∪∞. In fact, we
can assume this vertex is at ∞. If not, it is at some x ∈ R, and the matrix(

0 −1
1 −x

)
moves x to∞. Two sides will be vertical lines above the remaining

vertices which lie in either H or R. The remaining vertices lie on the closure of
a geodesic arc, given as a half-circle centered on the real line. Let y ∈ R be the

center and r2 be the radius. The matrix

(
1 −y
0 1

)
centers this geodesic at 0

and the matrix

(
1/r 0
0 r

)
leaves us with the unit circle. We are now in the

situation of Example 3, where we know the theorem holds.
Now assume we have a true hyperbolic triangle with vertices A,B, and C ∈

H with associated angles α, β, and γ. Let D ∈ R be the limit along the geodesic
arc between A and B so that the angle CBD is π − β. Let θ be the interior
angle at C so that the triangle with vertices A,C,D has interior angles α, γ+ θ,
and zero. This is an ideal triangle and so we know the area is π − α − γ − θ.
The smaller ideal triangle with vertices C,B, and D has interior angles θ, π−β,
and zero and so has area π− (π−β)− θ = β− θ. Taking the difference of these
two areas gives us our result.

The full Gauss-Bonnet theorem is a much more general theorem in Rie-
mannian geometry. Another important special case is Girard’s theorem about
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triangles on spheres. On a sphere every triangle has an angle sum of more than
π radians. Well on the sphere of radius 1, a triangle with interior angles α, β,
and γ has area α+ β + γ − π. Here we can perhaps see a bit of what it means
for H to be negatively curved and the sphere to be positively curved.

6 Lecture 6: The isometry group of H
Way back in Lecture 2, we stated that we can tell a lot about a space X by
considering a group G with a nice action on X. The action of SL2(R) on H is
nice for many reasons. It is transitive, it is continuous, it preserves areas, angles,
and distances. On account of the last of these, the action gives a homomorphism
SL2(R)→ Isom(H).

There are other properties we might like from groups acting on a set that
we do not have. For one, the action is not faithful in that there are different
elements of SL2(R) which act in the exact same way on H. Since SL2(R) is a

group, this equivalently means that there are elements besides

(
1 0
0 1

)
which

act as the identity isometry on H or that our homomorphism has a nontrivial
kernel. It’s pretty small though, so our action is not too far from being faithful.

Lemma 6. The kernel of the homomorphism SL2(R) → Isom(H) is the sub-

group

{(
±1 0
0 ±1

)}
which we may refer to as {±1}.

Proof. If T ∈ SL2(R) acts as the identity, it must fix i and thus lie in SO2(R).

An element kθ =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO2(R) acts on the imaginary axis,

rotating it by an angle of 2θ to another geodesic. Therefore the angle θ is an
integer multiple of π and the statement is proved.

It now follows if T ∈ SL2(R) that −T transforms H in exactly the same way
and every other element of SL2(R) acts differently. So if we want to consider
elements of SL2(R) in terms of their action on H, we should not consider single
matrices A but pairs of matrices ±T .

Put differently, we should use what is sometimes referred to as the first iso-
morphism theorem. That is, we have a homomorphism SL2(R) → Isom(H)
with kernel {±1}. This gives us a one-to-one or injective homomorphism
SL2(R)/{±1} ↪→ Isom(H). We refer to the group SL2(R)/{±1} as the pro-
jective special linear group or PSL2(R). Now PSL2(R) acts faithfully on H in
that for all ±T ∈ PSL2(R), there is some z ∈ H such that ±Tz 6= z.

Now how do we characterize elements of PSL2(R)? The Iwasawa decomposi-
tion points us in the right direction. It states that we have groups K ∼= SO2(R),
A ∼= R>0, and N ∼= R such that SL2(R) = KAN . Recall that an element(

1 x
0 1

)
∈ N always has trace 2 and has no fixed points in H unless x = 0.

An element

(
r 0
0 1/r

)
also has no fixed points in H unless r = 1, but the
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trace is r+ 1/r ≥ 2. Of course an element kθ ∈ K fixes i and no other elements
unless θ is an integer multiple of π. This is the only subgroup which contains
−1. The trace of kθ is 2 cos θ ≤ 2, but in fact we have |2 cos θ| ≤ 2. Now we
have hit on something that is defined on PSL2(R) - if T ∈ SL2(R) has trace t,
then −T has trace −t so the absolute value of the trace is a continuous function
PSL2(R)→ R≥0.

Definition 9. If T ∈ PSL2(R), we say that T is elliptic if | trT |≤ 2. We say
that T is parabolic if the trace is equal to 2, and hyperbolic if it is ≥ 2.

This quantity is especially nice because it will only see the conjugacy class of
an element in PSL2(R). That is, if S, T ∈ PSL2(R) then |tr(STS−1)| = |tr(T )|.
If for instance, if S sends i to z ∈ H then S−1(SO2(R)/± 1)S is the stabilizer
subgroup of z.

Let’s return to the issue of fixed points. Let

(
a b
c d

)
∈ SL2(R) and

z ∈ C. We have z fixed if and only if it is a root of cz2 + (d− a)z − b = 0. The
discriminant of this polynomial is ∆ = (a + d)2 − 4 and so there are two real
roots if ∆ > 0, two imaginary roots if ∆ < 0 and a single real root if ∆ = 0.
The upshot here is that unless T is elliptic, T has no fixed points in H. And
if all elements of a subgroup Γ ≤ PSL2(R) have no fixed points in H then the
quotient space Γ \ H is often very nice (we can be more specific later).

Example 4. Consider the parabolic subgroup Z ∼= Γ ≤ PSL2(R) generated by

±
(

1 1
0 1

)
. The quotient map H → Γ \ H can be expressed in a surprisingly

easy manner. Namely, if we can find a space X and a continuous function
f : H → X such that f(z) = f(z+1) then we have a continuous map Γ\H → X.
If we can invert f enough to land in Γ \ H, we can identify f with the quotient
map. In this case X = D• = D−{0} and f(z) = e2πiz. Inverting f just enough
to be defined on Γ\H is just taking a branch cut of the logarithm, i.e. restricting
the complex logarithm to have an argument in [0, 2π).

In the above example, we note that we take the quotient by a group isomor-
phic to Z and get a space whose fundamental group is Z. This is an instance of
something you’ll see in more detail if you take algebraic topology. Namely, this
group action is wandering, or satisfies what is often called a ”covering space”
condition. A group G acting on a path-connected space X by continuous maps
satisfies this condition if for all x ∈ X there is a small enough neighborhood U
of x such that if g ∈ G, gU ∩U 6= ∅ implies g = 1. This is to say that G pushes
open sets away from each other. Clearly the above action of Z on H satisfies
this condition. If this condition is satisfied and X is simply connected, like H,
then π1(G \X) ∼= G.

We should note that simply avoiding elliptic elements is not a panacea. For
instance, the parabolic subgroup N ∩ SL2(Q)/ ± 1 does not have a Hausdorff
quotient. Moreover, leaving out elliptic elements prevents us from looking at
some very interesting groups!
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Example 5. The group SL2(Z) ≤ SL2(R) acts on H, but SL2(Z) ∩ SO2(Z) =〈(
0 −1
1 0

)〉
∼= Z/4. Therefore if we quotient out by ±1, PSL2(Z) contains

a Z/2 stabilizing i. Can you find the other elliptic elements of PSL2(Z)?

7 Lecture 7: Proper discontinuity

Finally we arrive at an important definiton, which will guarantee good topolog-
ical properties for our quotient.

Definition 10. We say that a subgroup Γ ≤ PSL2(R) is Fuchsian if the sub-
space topology on Γ is discrete.

It’s easy to see why any point z ∈ H has a finite stabilizer subgroup in Γ.
The stabilizer of z in PSL2(R) is conjugate to SO2(R)/ ± 1 ∼= R/πZ, which
is compact. Therefore Γ intersected with any of these stabilizers is a discrete
subgroup of a compact space, and is therefore finite. Of course just having
finite stabilizers is not enough to guarantee a good quotient, but it turns out
that elements of Fuchsian groups move open sets away from each other unless
they fix a point- they act properly discontinuously.

Definition 11. We say that an action of a group G on a topological space X is
properly discontinuous if for all compact sets K1,K2 ∈ X, we have gK1∩K2 = ∅
for all but finitely many g ∈ G.

Theorem 3. A group G acting properly discontinuously on a locally compact
Hausdorff space X has a Hausdorff quotient G \X.

Proof. Suppose that x1, x2 ∈ X such that x2 6∈ Gx1, so the orbits Gx1 and
Gx2 are distinct in G \X. Since X is locally compact and Hausdorff, there are
non-overlapping open sets Vi and compact sets Ki such that xi ∈ Vi ⊂ Ki. Let
{g1, . . . , gn} be the elements of G such that gjK1 ∩K2 6= ∅.

Without loss of generality, each of these g do not fix x, for if gx = x then
we can replace K1 by the compact set K ′1 = K1 ∩ g−1K1 and see that

gK ′1 ∩K2 = (gK1 ∩K1) ∩K2 = gK1 ∩ (K1 ∩K2) = gK1 ∩ ∅ = ∅.

Furthermore, we may assume that for each g ∈ {g1, . . . , gn} we have x2 6∈
gK1 ∩K2, for if not, replace K1 with K1 − g−1V2. Finally we see that if we let
V ′2 = V2 −

⋃
j gjK1, then for all g ∈ G, gV1 is disjoint from V ′2 . The quotient

map q : X → G\X was constructed so that if U ⊂ X is open, then q(U) is open.
Therefore q(V1) and q(V ′2) are disjoint neighborhoods of Gx1 and Gx2.

Theorem 4. Fuchsian groups act properly discontinuously on H.

Proof. Fix K1,K2 compact subsets of H. It suffices to show that the set of all
γ ∈ SL2(R) such that γK1 ∩K2 6= ∅ is a compact set K. If so, we recall that
the quotient map q : SL2(R) → PSL2(R) is continuous and so q(K) is also
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compact. It follows then that Γ ∩ q(K) is a discrete subset of a compact space
and is therefore finite. If we let K1 and K2 range over all pairs of compact
subsets of H, we see that the action is therefore properly discontinuous.

So now we need to show that K is compact. To this end, recall that H ∼=
SL2(R)/SO2(R) and let K ′i = Ki × SO2(R), a compact subspace of SL2(R).
We do this to make the machinery of topological groups do the work for us.

We can therefore say that γ ∈ K if and only if there exist k1 ∈ K1, k2 ∈ K2,
s1, s2 ∈ SO2(R) such that γk1s1 = k2s2, or γ = k2s2(k1s1)−1. We see therefore
that K = K ′2(K ′1)−1, and it is now easy to see that this is compact. Namely,
since inversion and multiplication are continuous maps, they send compact sets
to compact sets.

Exercise 5. Show that if Γ is a torsion-free Fuchsian group, for all z ∈ H there
is a neighborhood U of z such that if g ∈ Γ and gU∩U 6= ∅ then g is the identity.

We see that the quotient of the upper half-plane by a Fuchsian group Γ gives
us a nice Hausdorff quotient Γ \H. How do we understand that quotient? One
way is by studying the way that H is tessalated by the action of Γ.

What we mean when we say that a Fuchsian group Γ tessalates H is that
there is a closed, contractible subset F of H such that

1.
⋃
γ∈Γ γF = H,

2. F has nonempty interior, and

3. γFo ∩ γ′Fo = ∅ unless γ = γ′.

We will frequently be interested in the case where F is a hyperbolic polygon,
i.e. a union of finitely many possibly ideal hyperbolic triangles. If we have such
a set, which we call a fundamental domain, then we can form the quotient Γ\H
by simply gluing together the appropriate sides of F .

Example 6. Take the ideal triangle with vertices 1,−1, and ∞. The interior is

a fundamental domain for the group generated by

(
1 2
0 1

)
and

(
0 −1
1 0

)
.

Really though, the best way to understand the quotient is with numbers,
and the best way to obtain those numbers is by integrating along paths. So far
the only thing that we’ve integrated is the metric

√
dx2 + dy2/y =| dz | /y.

While the metric descends from H to Γ \ H if Γ is torsion-free, this is no
longer the case if Γ has torsion. Especially, if z0 ∈ H is fixed by g ∈ Γ with
gn = 1 then locally at z0, the quotient map looks like z 7→ zn. That is to say,
we have a pinch point at z0 where the metric breaks down.

What will always descend down however are holomorphic differential k-forms
that are invariant under the action of Γ. We will say that a function on a region
f(z) = u(z) + iv(z) is holomorphic if ∂u

∂x = ∂v
∂y and ∂u

∂y = − ∂v
∂x . That is, if every

directional derivative of f is the same.
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Definition 12. A holomorphic differential n-form on a region R is something
that can be integrated n-times, i.e. something of the form f(z)(dz)n where f(z)
is holomorphic on R.

Recall now that d

((
a b
c d

)
z

)
= dz

(cz+d)2 . To ensure the whole differential

f(z)dz is invariant under the action of Γ, we need f

((
a b
c d

)
z

)
= (cz +

d)2nf(z) for all elements of Γ.

8 Lecture 8: SL2(Z) and modular forms

We want to consider differential forms on quotients of H by Fuchsian groups.
These naturally lead to a very important class of functions.

Definition 13. Let f be a holomorphic function on H. We say that f is a

weak modular form of weight k if for all

(
a b
c d

)
∈ Γ, f

((
a b
c d

)
z

)
=

(cz + d)kf(z). If additionally lim=(z)→∞ f(z) exists, we say it is a modular
form of weight k for Γ.

We may relax the limit requirement if Γ \ H is compact. It is possible to
consider modular forms of odd weight, and they are very interesting depending
on the group, but for the group SL2(Z) or its image PSL2(Z) in PSL2(R) they

are very simple. For instance if we take the matrix S =

(
0 −1
1 0

)
and k

is odd, f(z) = f(S2z) = (−1)kf(z) = −f(z) and so f is constantly zero.
However, if we take k even, we can get some very nice properties. For instance,

if we take T =

(
1 1
0 1

)
we see that f(z) = f(z + 1) so we have a Fourier

expansion for f . Namely if we change variables to q = e2πiz, we can write f as
f(q) =

∑
n≥0 anq

n. It turns out that any integer matrix with determinant one
can be written in terms of these two.

Theorem 5. The group SL2(Z) is generated by S and T .

Definition 14. The modular fundamental domain (which we will see is the
fundamental domain for SL2(Z)) is

F = {x+ iy ∈ H : −1/2 ≤ x ≤ 1/2, x2 + y2 ≥ 1}.

Proof. Let g =

(
a b
c d

)
∈ G = 〈S, T 〉 ≤ SL2(Z). As we know, if z = x+ iy ∈

H then

=(gz) =
=(z)

| cz + d |2
=

y

(cx+ d)2 + (cy)2
.

Since y > 0, there are only finitely many c making |cz + d|2 < B for any
given real number B. Similarly if we fix one of those finitely many c, there are
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only finitely many d making |cz + d|2 < B. For instance if we take B = 1 there
are only finitely many pairs (c, d) such that =(gz) > Im(z). Therefore for any
fixed choice of z there is a maximum value of =(gz) as we let g range over G.
Let g0 be an element where we attain that maximum value, i.e. for all g ∈ G
=(gg0z) ≤ Im(g0z). First we let g = S, and see that

=(g0z) ≥ =(Sg0z) =
=(g0(z))

|g0z|2
.

We therefore see that |g0z|2 ≥ 1. Let x0+iy0 = g0z, so we can see x2
0+y2

0 ≥ 1.
It is easy to see for all n ∈ Z that =(Tng0z) = =(x0 + n + iy0) = =(g0z), but
more than that we can choose n such that |x0 + n| ≤ 1/2. For this choice of n,
Tng0z ∈ F and of course Tng0 ∈ G, which is to say that for any point in H, we
can find an element which moves it to F .

Now we pick something in F , say 2i and let γ ∈ SL2(Z). Therefore γ(2i) ∈
H. Let g ∈ G such that gγ2i ∈ F . Therefore =(gγ2i) ≥

√
3/2. On the other

hand, if gγ =

(
a b
c d

)
then we see that we must have =(gγ2i) = 2

4c2+d2 ≥
√

3/2. If c 6= 0 then 4c2 + d2 ≥ 4 and so =(gγ2i) ≤ 1/2, so we must have c = 0
and thus a = d = ±1. Therefore gγ2i = 2i+ n for some n = ±b ∈ Z. But since
2i+ n ∈ F , we must have n = b = 0 and thus γ = ±g−1 ∈ G.

The proof above was essentially taken from a blurb of Keith Conrad 2. There
is another proof given, which essentially is the Euclidean algorithm. It should
be easy to see that if we give a proof without using F , then we can use that to
prove that any z ∈ H can be moved to an essentially unique element of F under
the action of SL2(Z). That is to say, the fundamental domain for the action of
SL2(Z) tells us quite a lot about the group SL2(Z), or likewise for any discrete
subgroup Γ of SL2(R) or PSL2(R).

Let’s return to the topic of modular forms of weight 2k for PSL2(Z), which
are therefore functions f such that f(z + 1) = f(z) and f(−1/z) = z2kf(z). A
natural way to get the correct transformation factor is the following.

Definition 15. Define the Eisenstein series of weight 2k as

G2k(z) =
∑

m,n∈Z

(m,n) 6=(0,0)

1

(mz + n)2k
.

Theorem 6. If k > 1, G2k(z) is a weight 2k modular form for PSL2(Z).

Proof. The transformation factor is correct because

G2k(z + 1) =
∑

m,n∈Z

(m,n)6=(0,0)

1

(mz +m+ n)2k
=

∑
m,n∈Z

(m,n)6=(0,0)

1

(mz + n)2k
= G2k(z),

2http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/SL(2,Z).pdf
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and

G2k(−1/z) =
∑

m,n∈Z

(m,n)6=(0,0)

1

(−m/z + n)2k
.

so

1

z2k
G2k(−1/z) =

∑
m,n∈Z

(m,n)6=(0,0)

1

(nz −m)2k
=

∑
m,n∈Z

(m,n)6=(0,0)

1

(mz + n)2k
= G2k(z).

We have however only checked that as a formal series this transformation
works. For this to work as a function, we need the series to converge absolutely
on H and uniformly on compact subsets. It is routine to check this is the
case for k > 1. Once we verify that, it’s smooth sailing. We can pass limits
through the sums, and therefore derivatives. We have previously verified that
linear fractional transformations are holomorphic, and each term in the sum is a
linear fractional transformation so the relevant differences in partial derivatives
vanish. Moreover, in F , =(z)→∞ if and only if |z| → ∞, so

lim
=(z)→∞

G2k(z) = 2
∑
n≥0

1

n2k
+
∑
m6=0

∑
n∈Z

lim
|z|→∞

1

(mz + n)2k
= 2ζ(2k).

We leave off on this point, but this is only the beginning. As Eichler was
rumored to have once said “There are five basic arithmetic operations: addi-
tion, subtraction, multiplication, division, and modular forms.” There is a lot
of interesting mathematics to be mined from Fuchsian groups and their gener-
alizations, and the zeta function suddenly appearing here is only the start.
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