TOPICS IN MODERN GEOMETRY TOPOLOGY HOMEWORK SHEET 2

THOMAS OLIVER UNIVERSITY OF BRISTOL

Exercise 1. Show that a metrisable topological space is Hausdorff.

Exercise 2. Let S^1 denote the circle, with the subspace topology from \mathbb{C} . Show that

- $S^1 \times [a, b]$ is homeomorphic to both the cylinder (given subspace topology from \mathbb{R}^3) and the annulus (given subspace topology from \mathbb{R}^2);
- $S^1 \times S^1$ with the product topology is homeomorphic to the torus given the quotient topology induced from the unit square $[0,1]^2$, which in turn has the subspace topology from \mathbb{R}^2 . Show that both of these topologies agree with the subspace topology from the usual embedding into \mathbb{R}^3 .

Exercise 3. Let (G, \cdot) and (H, \times) be topological groups. Show that the direct product $G \times H$ is a topological group with respect to the product topology. Recall that the direct product is given by the set

$$G \times H = \{(g, h) : g \in G, h \in G\},\$$

with group operation given by

$$(g_1, h_1)(g_2, h_2) = (g_1 \cdot g_2, h_1 \times h_2).$$

For the group theorists: Let N be a normal subgroup of a topological group G, show that the quotient group G/N is a topological group with respect to the quotient topology.

Date: September - October, 2015.