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Introduction

This short course on topology is the first part of the module “Topics in Modern Geometry”.
As such, an important purpose of these lectures is to develop the pre-requisites for the
second part, in which you will study hyperbolic geometry. The student should not deduce
from this that topology is simply a tool for hyperbolic geometry. Indeed, topology is a vast
subject, the major theorems and vocabulary of which arise in a wide range of mathematical
disciplines. Nor is topology short of real word applications, making an appearance in the
fields of condensed matter physics, data analysis, electronics, and even robotics.
A 9 hour course could never cover everything and our intention here is simply to introduce
and explore a few key areas. First and foremost amongst which we have the question what
exactly is topology? In short, it is a language with which we can speak rigorously of intuitive
ideas concerning continuity. Indeed, it is in a sense the minimal such language. There is
no need for our old friends ε and δ to discuss continuous maps between topological spaces,
only a notion of open set. Topology can be thought of as qualitative geometry, as opposed
to, say, analytic or differential geometry, in which measurements such as curvature are the
key invariants. Topological invariants are those which remain after continuous deformation
- one may stretch and squash, but not tear.
At first, our topological spaces will be plain old sets, but before long we will introduce
algebraic and Euclidean structures to provide some context. In the algebraic case we will
consider topological groups in which the group operation is a continuous map, wheras in the
Euclidean setting the key objects are manifolds, of which we will give an intrinsic definition.
We will then explore the interactions of topological and algebraic structure, placing particular
focus on discrete groups. The simplest examples of discrete groups are finite groups, and
generalising finiteness we introduce the notion of compactness. All discrete spaces, finite or
not, are totally disconnected. We will quantify this statement by providing a formal definition
of connectedness. Building on that, we introduce homotopy and define the fundamental
group, which is basic invariant of a topological space. This notion will be used in the
hyperbolic geometry course and is developed further in the Algebraic Topology module.
To summarise, the key topics of this course are as follows:

• General topology;
• Manifolds;
• Topological groups;
• Discrete groups;
• Compactness and connectedness.

Date: September - October, 2015.
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1. Topological Spaces

Of course, we begin with the following central definition.

Definition 1.1. A topological space is a pair (X, τ), in which X is a set and τ is a collection
of subsets of X such that the following conditions are satisfied:

(1) ∅, X ∈ τ ;
(2) If A is a set1 and {Uα : α ∈ A} ⊂ τ , then ∪α∈AUα ∈ τ ;
(3) If, for n ∈ N, U1, . . . , Un ∈ τ , then U1 ∩ · · · ∩ Un ∈ τ .

In the above definition, τ is called the topology on X and the sets in τ are the open sets.

The first condition says that, in any topological space, the empty set and the space itself are
open subsets. The second says that the topology is closed under arbitrary unions, whereas
the third says that the topology is closed under finite intersections. The terminology “open”
is supposed to reflect eponymous concepts you will have seen in earlier courses, such as the
notion of open interval in R or open ball in C, both of which are open sets in metric space.

Example 1.2. Let (X, d) be a metric space and say that a set U ⊂ X is open if, for any
x ∈ U , there exists ε > 0 such that the open ball Bε(x) := {y ∈ X : d(x, y) < ε} is contained
in U . It is left as an exercise for the student to check that this defines a topology on X.
In particular, recall that the set Rn forms a metric space with respect to the Euclidean
distance. The associated topology is called the Euclidean topology. In the case that X = R,
the Euclidean topology τ can be specified explicitly as

τ = {U ⊆ R : ∀x ∈ U,∃(a, b) ⊆ U st x ∈ (a, b)}.

One may moreover write down similar results fo Rn when n > 1. Notice that an infinite
intersection of open sets need not be open. In R, for example, the intersection of open
intervals ∩n∈N(− 1

n
, 1
n
) = {0}, which is not open. We remark that Cn with the usual norm

can be identified with R2n with the Euclidean norm - this means that Cn also forms a
topological space.

So, in topology we have open sets, but what about closed sets?

Definition 1.3. Let (X, τ) be a topological space. A set A ⊂ X is closed if its complement
F = X\A is open.

For example, the closed interval [a, b] ⊂ R has complement

R− [a, b] = (−∞, a) ∪ (b,∞),

which is a union of open intervals. Therefore [a, b] is a closed subset of R with respect to
the Euclidean topology. We must be careful - in spite of the suggestive terminology, and the
apparent agreement with our intuition, “open” and ”closed” are not antonyms! For example,
one may write down an examples of subsets which are both open and closed, or neither open
nor closed. Sets that are both open and closed are sometimes called clopen2. The definition
of topology is given in terms of a family of open sets satisfying certain axioms. In fact, one

1possibly uncountable!
2If you think that sounds like a joke, I encourage you to search YouTube for “Hilter learns topology”.
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could formulate an equivalent definition in terms of closed sets via De Morgan’s laws, which
we recall say that if A and B are sets, then

(A ∪B)c = Ac ∩Bc,

(A ∩B)c = Ac ∪Bc,

where Sc denotes the complement of a set S. In is a worthwhile exercise for the reader to
write down three axioms defining a topological space in terms of closed sets.
Above we have seen that metric spaces are topological spaces. In fact, many of the familiar
notions from metric spcaes carry over to the more general context of topological spaces. For
example:

Definition 1.4. Let (X, τ) be a topological space

(1) Given a point x ∈ X, a neighbourhood of x is any subset of X containing an open
set which contains x;

(2) Given a subset A ⊂ X the closure Ā of A is the smallest closed set containing A,
that is, the intersection of all closed sets containing A. Equivalently, x ∈ Ā if and
only if for any neighbourhood N of x, N ∩ A 6= ∅;

(3) Given a subset A ⊂ X, the interior int(A) of A is the union of all open sets contained
in E.

Many of the standard results follow immediately.

Proposition 1.5. Let X be a topological space and let A ⊂ X be a subset. The interior of
A is open and the closure of A is closed. Moreover, A is open iff A included in its interior,
and A is closed iff it includes its closure.

Proof. This is an exercise for the student. �

We have above defined a topology in R by taking advantage of its metric structure, though
we didn’t have to. Indeed, a set can have more than one topology, some examples of which
are given below. That said, some topologies may be considered more “natural” than others.
For example, one often seeks a topology which interacts well with other structures on X.
For example, the topology given above seems to be the natural candidate on a metric space.
In later lectures we will be interested in topologies that interact well with group structure
on X.

Example 1.6. Throughout, let X be a set. In each case the student might wish to check
that τ satisfies the axioms.

(1) The trivial topology on X is given by τ = {∅, X}.
(2) At the other extreme, one has the discrete topology in which every subset of X is

open, that is τ = 2X , the power set of X.
(3) The cofinite topology has open sets ∅ and any U ⊂ X such that X\U is finite.

Having many different topologies on a set X, one may seek to compare them. One way to
do that is via inclusion. If τ1 and τ2 are topologies on a set X such that τ1 ⊂ τ2, then we
say that τ1 is coarser or weaker than τ2 and that τ2 is finer or stronger than τ1. Notice that
the discrete topology is the finest topology and the trivial topology is the coarsest.

Example 1.7. Let I be an indexing set and let τi, i ∈ I, be a collection of topologies on a
set X. The intersection τ := ∩i∈Iτi defines a topology on X which is coarser than each τi.
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2. Continuity, Subspaces and Density

In this section we will study maps which preserve topological structure. Such maps are called
continuous, the terminology reflecting the fact that this notion generalises the familiar notion
on metric spaces.

Definition 2.1. Given topological spaces X and Y , a map f : X → Y is said to be
continuous if for every open subset U ⊂ Y , the inverse image f−1(U) := {x ∈ X : f(x) ∈ U}
is open in X.

This definition is rather concise. The purpose of the following exercise is to check that it
encapsulates what we expect in the context of metric spaces.

Exercise 2.2. Let (X, dX) and (Y, dY ) be metric spaces, which we can think of as a topo-
logical space as in the previous lecture. Recall that a map f : X → Y is continuous if

∀x ∈ X, ∀ε > 0,∃δ > 0 s.t ∀x′ ∈ X (dX(x, x′) < δ ⇒ dY (f(x), f(x′)) < ε).

Prove that a continuous map of metric spaces is a continuous map in the topological sense.

In particular this means that many familiar functions Rn → Rm are continuous, such as
polynomials3, exponentials, trigonometric functions, etc. Contrasting that given above, we
make the following definition, which looks similar but is rather different in practice - so be
careful!

Definition 2.3. A map f : X → Y between topological spaces X and Y is called open if,
for any open set U ⊂ Y , the image f(U) := {f(x) : x ∈ U} is open in Y .

The composition of two continuous maps is again continuous, as may easily be checked.
As in all branches of mathematics, we classify topological spaces up to some specified form
of equivalence. For example, one might think of two groups as “the same” if they are
isomorphic, or consider two metric spaces to be “the same” if they are isometric. In topology,
the analogous statement is that two spaces are “the same” if they are homeomorphic. This
is the subject of the following definition.

Definition 2.4. Given two topological spaces X and Y , a homeomorphism f : X → Y is a
bijective map which is both open and continuous.

It can be useful to note that a map f between topological spaces is a homeomorphism if
and only if it is bijective and both f and f−1 are continuous. It can be rather difficult
to say whether or not two topological spaces are homeomorphic, let alone give an explicit
homeomorphism. It is for this reason one introduces topological invariants, certain charac-
teristics of topological spaces which are preserved by homeomorphism. It follows that if such
an invariant is different for two topological spaces, they cannot be homeomorphic. At this
point a word of warning is perhaps in order, in the case that various topological invariants
of two spaces agree, it need not follow that these spaces are homeomorphic.

Example 2.5. A torus can not be homeomorphic to a sphere. The invariant here is con-
nectedness, which we will discuss later in this course. The idea is that removing a circle
from the surface of a sphere always divides the sphere into two disjoint open subsets. On
the other hand, the analogous statement for the torus is not true.

3A different, purely topological, proof of the continuity of polynomials will be given in the exercises.
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Connectedness aside, the first difficulty we face with this argument is that we speak of “open
subsets” of the sphere and the torus, and yet, we have not so far defined a topology on these
spaces. One intuitive way to do this is to emded these spaces into the Euclidean space R3 and
“induce” a topology from there. We are lead to the idea of studying subsets of topological
spaces which admit topological structure in their own right. This may be compared to
subgroups of a group, subspaces of a vector space, etc.

Definition 2.6. Let Y be a subset of a topological space X. The subspace topology on Y
is the coarsest topology such that the map i : Y → X is continuous. That is, the open sets
of Y are given by intersections Y ∩ U in which U is an open subset of X4.

Example 2.7. The complex plane C, with respect to the Euclidean metric, is homeomorphic
to the punctured sphere S2 − {pt}, which has the topology induced from the Euclidean
topology on R3. A homeomorphism S2 − {pt} → C is given by stereographic projection.

Example 2.8. A topological space may well be homeomorphic to a proper subset. For
real numbers a < b, the open interval (a, b) is homeomorphic to R. You should be able to
construct a homeomorphism, for example, via the function arctangent function.

Whilst not always homeomorphic to their ambient space, subspaces may still be dense. This
means that, given any element of a topological space, there exists an element of the subspace
arbitrarily “close” to it. Formally we make the following definition.

Definition 2.9. A subset Y of a topological space X is dense if, for any non-empty open
U ⊂ X, we have U ∩ Y 6= ∅. Equivalently, Y is dense in X if and only if the closure of Y is
equal to X.

Exercise 2.10. Endow R with the Euclidean topology. Show that the subspace topology
on the set of natural numbers N and the set of integers Z is the discrete topology, but the
subspace topology on Q is not discrete. Show that Q is a dense subset of R.

One sometimes refers to the reals as a completion of Q. This may seem like a somewhat
unique situation, but that is far from the case. In fact there are infinitely many completions
of Q, corresponding to infinitely many choices of metric. This is the topic of one of the
fourth year project options. Generalising the notion of density, we have

Definition 2.11. A subset S of a topological space is somewhere dense if there exists a
non-empty open set U such that S ∩ U is dense in the subspace topology of U . A subset S
of a topological space X is nowhere dense if it is not somewhere dense.

Exercise 2.12. Show that a subset of a topological space X is nowhere dense if and only if
the closure of S has empty interior.

Notice that the order in which we take interior and closure is crucial in the above statemet,
as evidenced by the following exercise.

Exercise 2.13. Give an example of a subset S of a topological space X which is somewhere
dense such that its interior has empty closure.

4The reader might like to confirm that the two versions given in the definition above are indeed equivalent.
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3. Topological Bases and Separability

Having to specify every open subset in a topological space can be somewhat tiresome. In
the case of the real line R, the key open subsets are the open intervals - all other subsets
are generated from these through a process of taking unions and intersections. This is the
idea of a basis of open sets, from which all other open sets are built. We begin by defining
the closely related notion of generated topology associated to a given collection of subsets,
which is somewhat comparable to the span of a given set of vectors in a vector space. In
this analogy, a basis is a spanning set, though we note that there is no immediately evident
“independence” condition.

Definition 3.1. Let σ denote a collection of subsets of a set X. The topology generated by
σ is the intersection of all topologies on X which contain σ.

That is, the topology generated by σ is the coarsest topology on X for which each set U ∈ σ
is open. In the following exercise you will write down what the generated topology actually
looks like, at least under a mild assumption.

Exercise 3.2. Suppose that σ := {Uα ⊂ X : α ∈ A} is such that X ⊂ ∪αUα. In ths case we
say that σ covers X. Show that, if σ covers X then the open sets in the topology generated
by σ coincide with those sets which can be written as the union of finite intersections of
elements in σ.

Definition 3.3. Let (X, τ) be a topological space. A subset σ ⊂ τ forms a basis for τ if
every element of τ can be written as a union of elements of σ.

The reader might like to convince themselves that if σ is a base for τ then the topology
generated by σ is equal to τ . On the other hand, one might ask when a collection of subsets
is a base for the topology it generates.

Exercise 3.4. Show that if σ covers X and the intersection of any two elements of σ equals
a union of elements of σ then σ is a base for the topology it generates.

Exercise 3.5. Let (X, τ) be a topological space and let σ ⊂ τ cover X. Write down a basis
for the topology generated by σ.

For example, the open balls form a base for the metric topology on a metric space. In
particular, as we have already mentioned, the open intervals form a basis for R. In fact, we
may refine the open interval basis for R to a countable basis, taking advantage of the density
of Q. It is down to the reader to provide details for this claim.

Definition 3.6. A topological space X is said to be second countable if it has a countable
base.

For example a subspace of Rn is second countable with respect to the Euclidean topology.
On the other hand R2 is not second countable with respect to the order topology. Of course,
the terminology makes one wonder what a first countable topological space is. To that end:

Definition 3.7. A topological space X is first countable if every x ∈ X has a countable
family of open neighbourhoods (Bi)i∈N such that any neighbourhood of x contains some Bi.

What remains is to pin down what exactly the relationship between these two is. That is
the subject of the following exercise.
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Exercise 3.8. Show that a topological space X is first countable if and only if

∀x ∈ X, ∃ open sets {Ui} such that ∀ open U 3 x,∃i ∈ N such that x ∈ Ui ∈ U,
and show that it is second countable if and only if

∃x ∈ X, ∀ open sets {Ui} such that ∀ open U 3 x,∃i ∈ N such that x ∈ Ui ∈ U.
Intuitively, first countable spaces have locally countable bases around each point and second
countable spaces have globally countable bases for the whole space.

Second countable spaces are nice as they satisfy an important condition known as separabil-
ity.

Definition 3.9. A topological space is separable if it has a countable dense subset.

Proposition 3.10. If a topological space X is second countable then it is separable.

Proof. Say that {Bi}i∈N is a countable base for X. Without loss of generality, we may assume
that each Bi is non-empty. So, for each i ∈ N, we may choose xi ∈ B. If U is a non-empty
subset of X, there exists i ∈ N such that Bi ⊆ U and hence xi ∈ U . We conclude from this
that the xi form a countable dense subset. �

Example 3.11. The set of real numbers is separable, indeed, Q is an appropriate sub-
set. Note that two real numbers may be “separated” by a rational, which goes some way
to explaining the terminology, though, before getting too cocky, the reader is referred to
definition 4.2 below.

Moreover, it is true that Rn with the Euclidean topology is separable. In fact, in this case,
separability and second countability are actually equivalent. This is a consequence of the
more following more general proposition.

Proposition 3.12. If X be a metric space with the metric topology, then X is second count-
able if and only if it is separable.

Proof. We have just seen that any second countable topological space is separable. We must
show the converse in the special case that X is metrisable. To that end, assume that X is
separable, that is, has a countable dense subset {xi}i∈N. Since X is a metric space, it makes
sense to consider the following family of open balls

B := {Br(xi) : r ∈ Q+, i ∈ N}.
The family B is countable as a countable union of countable sets. We will show that it is a
base.
Let x ∈ X and consider a neighbourhood N of X. As N is a neighbourhood, there exists
by definition ε > 0 such that Bε(x) ⊂ N . As {xi} is dense, there exists i ∈ N such that
xi ∈ Bε/2(x). By the density of the rationals in the reals, there is r ∈ Q such that

d(x, xi) < r < ε/2.

One then deduces from the triangle inequality that

x ∈ Br(xi) ⊂ Bε(x) ⊂ N,

as required. �
7



4. Separation Axioms, Quotient Spaces and Manifolds

Metric spaces are our friends, providing us with a rich source of examples in topology. If
only every topological space could be a metric space. Actually, how do we know this isn’t
the case? How can we be sure that, given a topological space, there isn’t some unspecified
complicated metric on the underlying set which induces the topological structure. We have
a word for that state of affairs.

Definition 4.1. A topological space (X, τ) is metrisable if there exists a metric d on X such
that the topology on X inhereted from this metric coincides with τ .

One can ask when a topological space is metrisable, though we sadly do not have time to
get into it in this course. But we will get into separation axioms, which are a route to giving
a satisfactory answer to this question - the idea is that topological spaces with the correct
separation properties are metrisiable. So, what is a separation axiom? Separability, despite
the term, is a countability axiom, and not a separation axiom. There are a lot of separation
axioms5, and we will not cover them all in this course. Still, one particular axiom is rather
important.

Definition 4.2. A topological space X is separated if for all pairs of points x, y ∈ X, there
are open neighbourhoods U of x and V of y that are disjoint.

This definition encompasses the basic idea of separation axioms, namely, a specification of
how well a topological space allows us to distinguish points. Admittedly, the term “sepa-
rated” is rather close to “separable”, and there is scope for confusion. With that in mind,
many resources use the term “Haussdorff” in place of “separated”. We will use the two
terms interchangably.
By way of contrast to separation, one sometimes wants to identify two points in a topological
space via an equivalence relation. That is, we think of two points as “the same” if they lie
in the same equivalence class. Such equivalence relations often arise from a group action
on a set, and this will be of considerable importance in the second half of this course. In
order to do this identification thoroughly, we must first show that the quotient space has
a reasonable topology. With that in mind, recall that, given a topological space X and an
equivalence relation ∼ one always has the quotient map:

q : X → X/ ∼:= {equivalence classes of ∼ in X}
x 7→ [x], the equivalence class of x.

Definition 4.3. Let X be a set with an equivalence relation ∼. The quotient topology on
X/ ∼ is the coarsest topology such that the quotient map q : X → X/ ∼ is continuous.

Exercise 4.4. Let ∼ be an equivalence relation on a topological space X, with quotient
map q. Show that the quotient topology on X/ ∼ is composed of open sets of the form
{E : q−1(E) is open in X}.

Example 4.5. Many interesting examples of quotient spaces appear as quotients of the
square [0, 1]2 ⊂ R2. For example, if we identify two opposite sides with the same orientation
we produce a cylinder. If we make this identification with opposite orientation we obtain a

5Have a look on the Wikipedia page for separation axiom. The page on history of separation axioms may
also be of interest.
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Mobius strip. Starting from the cylinder, we may identify the two boundary circles with the
same orientation and recover a torus. With the opposite orientation we construct a Klein
bottle.

Example 4.6. Yet more interesting examples can be obtained from quotients of vector
spaces. Let V be a two-dimensional vector space over R and define an equivalence relation
on V − {0} by v1 ∼ v2 iff there is some non-zero λ ∈ R× such that v1 = λv2. The quotient
space (V − {0})/ ∼ is known as a projective space P(V ) and can be thought of as the set
of lines through the origin in V . Such lines are specified by one paramater, namely the
gradient, so this space is considered one-dimensional. By choosing a basis for V we may
identify it with R2 and P(V ) can be denoted P1(R) and called the projective line. There
is an analogous construction for a 3-dimensional vector space, giving rise to the projective
plane, which is in fact a quotient of the Mobius strip.

By definition, the quotient map is continuous. It is also quite often open, especially in
geometric situations. It is not, however, a homeomorphism, as it certainly need not be
bijective. A general question to ask is how does the topological quotient map interact with
other topological properties? For example, if X is a Hausdorff topological space and ∼ is
an equivalence relation on X, is it true that X/ ∼ is also Hausdorff? The answer is no,
and the student should seek to construct examples of this phenomenon. Still, some quotient
spaces are Hausdorff, in particular, those which are manifolds such as the cylinder, torus,
etc. constructed above.
Manifolds are geometric objects which look locally like Euclidean space. That is, around
every point on the manifold there is an open neighbourhood homeomorphic to an open ball
in Euclidean space. This idea is made more formal by the notion of local homeomorphism.

Definition 4.7. A map f : X → Y between topological spaces is a local homeomorphism
if, for every x ∈ X, there is an open set U containing x such that f(U) is open in Y and the
restriction f |U : U → f(U) is a homeomorphism.

Definition 4.8. A manifold is a second-countable Hausdorff topological space which is
locally homeomorphic to Euclidean space.

Generally one is interested in manifolds of fixed dimension, meaning that the neighbourhood
of every point is isomorphic to an open ball in a Euclidean space of fixed dimension. For
example, a surface is a manifold of dimension 2. Wheras it can be rather difficult to classify
topological spaces up to homeomorphism, it turns out that it is possible to do so for compact
surfaces. We will see a definition of compactness later in this course, but when there is an
embedding into Euclidean space it suffices to say that such manifolds are precisely those
which are closed and bounded. The first major dividing line in the family of compact surfaces
is orientability. For example, the Mobius strip is not orientable. In a sense, this means it only
has one “side”. The orientable compact surfaces are characterised up to homeomorphism by
their genus, that is, number of “holes”. When the genus is 0 we have a sphere, when the
genus is 1 we have a torus. To produce a surface of genus 2, one removes a disc from two tori,
and glues the remaining spaces along the boundary. This idea can be made more rigorous
with the quotient topology, and it can be iterated to construct compact orientable surfaces
of higher genus. A similar procedure enables one to construct the compact non-orientable
surfaces by gluing copies of the projective plane P2(R). For example, one constructs the
Klein bottle by gluing two projective planes.
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5. Topological Groups

We will now study some interactions of algebra with topology. More specifically, we will be
adding topological structure to groups6. A group with a satisfactory topological structure is
called a topological group. By “satisfactory”, what we mean is that the group G is given a
topology with respect to which, in particular, the group operation defines a continuous map
G×G→ G. We thus see the need for introducing a natural topology on product spaces.

Definition 5.1. Let {Xα : α ∈ A} be an indexed set of topological spaces, the product
topology on

∏
α∈AXα is the coarsest topology such that all of the projections

πβ :
∏
α∈A

Xα → Xβ

(xα)α∈A 7→ xβ,

are continuous.

The formulation above allows for both finite and infinite products, though for topological
groups we will only need the former case. The following examples are something of a sanity
check.

Example 5.2. Some product spaces, for example Rn, already have a glaring topological
structure, which in the case of Rn is the Euclidean topology. It is true that Rn with the
Euclidean topology is homeomorphic to the n-fold Cartesian product R × · · · × R with the
product topology.

Example 5.3. We all know that we can consider the real plane R2 in both Cartesian and
polar co-ordinates. We can think of points on the unit circle S1 as “angles”, denoted by θ
and we have a homeomorphism

f : S1 × (0,∞)→ R2 − {0}
f(θ, r) = (r cos(θ), r sin(θ)).

Example 5.4. Earlier we constructed the torus as a quotient of the square. Alternatively,
it can be shown that the torus is homeomorphic to the product of two circles S1 × S1.

Definition 5.1 as written above is not very constructive. To that end, the following exercises
provide a more workable framework.

Exercise 5.5. Let X1, . . . , Xn be a finite family of topological spaces, show that a base for
the product topology consists of sets which can be written in the form

π−11 (U1) ∩ · · · ∩ π−1n (Un)

for some open Ui ⊂ Xβi . Can you write down a basis of the product topology for infinite
products?An answer will be given in the following lecture.

Such infinite products will appear again in the next lecture on compactness. Now that
we have a satisfactory definition of topology on product spaces we can give the promised
definition of topological group.

6Contrast this to what happens in section 7, in which we will start with an arbitrary topological space
and construct from it a group (the so-called fundamental group)
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Definition 5.6. A topological group is a triple (G, τ, ·) in which (G, τ) is a topological space
and (G, ·) is a group such that the following conditions hold:

(1) The inverse operation

G→ G

g 7→ g−1

is a continuous map.
(2) The group operation (g1, g2) 7→ g1 · g2 is a continuous map G×G→ G when G×G

is endowed with the product topology.

Under the discrete topology, every group is a topological group. What is more interesting
is when we can give a group a more “natural” topology. But what exactly does that mean?
Hopefully a few examples should illustrate this somewhat vague concept!

Example 5.7. We have seen lots of topological spaces in these notes that have a clear group
structure: Z, Q, R, C, Rn, S1. Each of these is in fact a topological group with respect to
their usual topologies and of these only Z is discrete.

Example 5.8. A finite group is often thought of as having the discrete topology. In this
sense, topological groups with the discrete topology, that is discrete groups, are a generali-
sation of finite groups.

Example 5.9. Let Cn2
have the product topology, and consider GLn(C) as a subset with

which we endow the subspace topology. GLn(C) is then a topological group under matrix
multiplication, which is given by polynomial maps. GLn(R) has the subspace topology in-

herited from Rn2
. Similarly one has matrix subgroups such as SL2(R), which will appear

repeatedly in your lectures on hyperbolic geometry. The subgroup SL2(Z) inherits the dis-
crete topology and is thus a discrete group.

In fact, this example illustrates a special case of a more general phenomena. Specifically,
any subgroup of a topological group is a topological group under the subspace topology. The
dedicated reader may like to prove this claim!
We have previously introduced a notion of “equivalence” for topological spaces, namely
homeomorphisms. On the other hand, elsewhere you should have seen the analogous notion
for groups, that is, isomorphisms. It seems reasonable to combine these two definitions in
the context of topological groups.

Definition 5.10. A map f : G1 → G2 between topological groups G1 and G2 is a topological
homomorphism (resp. isomorphism) if it is continuous and a group homomorphism (resp.
isomorphism).

Plenty of standard homomorphisms on groups become topological homomorphisms when we
add reasonable topological structure to the groups involved. The following example is a case
in point.

Example 5.11. Consider the topological group R× = GL1(R). The determinant map
det : GLn(R) → GL1(R) gives a homomorphism of topological groups. It is surjective, but
not injective, and it’s kernel is the topological group SLn(R).

11



6. Compactness

As mentioned previously, finite groups are often thought of as discrete topological groups.
In this section we introduce a generalisation of finiteness known as compactness. Previously
we have mentioned one or two limitations on the “size” of a topological space, namely,
first countable; second countable and separable. Each of these conditions has to do with
cardinality, which is an aspect of set theory, wheras compactness involves more developed
aspects of topology. Compact sets are a generalisation of closed and bounded subsets of
Euclidean space.

Definition 6.1. Let X be a topological space and C ⊂ X. An open cover of C is a collection
{Uα} of open subsets of X such that

C ⊂ ∪αUα.
An (open) subcover is a set {Uαβ} ⊂ {Uα} which also covers C. If a subcover is finite, we
say “finite subcover”.

The definition of compactness has to do with the cardinality of the indexing sets of open
covers.

Definition 6.2. A subset C of a topological space X is compact if each of its open covers
has a finite subcover.

The classic examples of compact sets are very familiar.

Example 6.3. The theorem of Heine–Borel7 states that a subset of Rn (with the Euclidean
topology) is compact if and only if it is closed and bounded. From this one concludes that
R is not compact, and nor is the open interval (0, 1) compact. One can use this to deduce
compactness of certain matrix groups, eg. On(R), Un(C), Spn.

In general, compact subspaces need not be closed unless the space is Hausdorff. A corollary
is that a map from a compact space to a Hausdorff space is a homoemorphism if it is a
continuous bijection (ie. we need nothing about inverse!).

Example 6.4. As closed and bounded subsets of Euclidean space the circle and the torus
are compact spaces. In the case of the circle, this result also follows from the fact that the
image of a compact space under a continuous surjective map is compact. For example S1 is
the image of the map f : [0, 1] → S1, f(t) = exp(2πit). The fact that the torus is compact
may also be deduced from the fact that a product of compact spaces in compact. This result
even holds for infinite products, as we will prove below.

Although S1, On(R), etc. are compact topological groups, there are evidently plenty of
topological groups which are not compact. Still, many topological groups (especially in this
course!) satisfy the following weaker condition.

Definition 6.5. A topological space is locally compact if every point has a compact neigh-
bourhood.

Proposition 6.6. A topological group is locally compact if and only if the identity has a
compact neighbourhood.

7Covered in the metric spaces course.
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Proof. Clearly if a topological group is locally compact then the identity has a compact
neighbourhood. For the converse, start by observing that a continuous image of a compact
subset is compact. More precisely, let f : X → Y be a continuous map between topological
spaces and let C ⊂ X be compact, we claim that f(C) is also compact. Indeed, let ∪αUα
be an open cover of f(C), so that ∪αf−1(Uα) is an open cover of C. As C is compact, there
are finitely many αi such that

C ⊂ ∪if−1(Uαi).
It follows that f(C) has the finite subcover ∪iUαi . Next note that for any element g ∈ G, the
map x 7→ gx : G→ G is a continuous map. It follows that if C is any compact neighbourhood
of the identity then gC is a compact neighbourhood of g. �

Example 6.7. R is a locally compact topological group, for example [−1, 1] ⊂ R is a compact
neighbourhood of the identity according to the Heine–Borel theorem. Can you prove that
GL2(R) is a locally compact group? This will be covered in problems class 2.

Locally compact topological groups are especially nice. One reason is that they admit a Haar
measure, which is a generalisation of the Lebesgue measure on R. Given such a measure,
one may develop a theory of integration. It is possible to study a special case of this in one
of the year 4 projects. Another nice thing about locally compact groups is their “duality”
properties. For example, if a locally compact topological group G is abelian then there is
a notion of a dual group G∨ such that (G∨)∨. Combining this result with the integration
theory hinted at previously, one may develop harmonic analysis (Fourier series etc.) on
locally compact abelian groups. This is very important, though beyond the scope of this
course.
We finish this section by considering products of compact spaces. Tychonoff’s theorem says
that any, finite or infinite, product of compact spaces is compact. We will prove this in the
countable case.

Theorem 6.8. Let X1, X2, X3 . . . be topological spaces. If each Xi is compact, then the
product

∏∞
i=1Xi is compact.

Proof. We argue by contradiction. To that end, suppose we have an open cover O = {Uα}
with no finite subcover. Under this assumption, there exists x1 ∈ X1 such that no basis set
U1×X2×. . . with x1 ∈ U1 is covered by finitely many sets in O. Indeed, if, for every x1 ∈ X1,
there was such a basis set then there would be a finite open subcover of O. Similarly, there
is an x2 ∈ X2 such that no basis set U1×U2×X3× . . . with (x1, x2) ∈ U1×U2 is covered by
finitely many sets in O. In fact, one can choose an infinite sequence of points xi ∈ Xi such
that, for all n ∈ N, no basis set U1×· · ·×Un×Xn+1× . . . with (x1, . . . , xn) ∈ U1×· · ·×Un is
covered by finitely many sets in O. This is a contradiction because the point (x1mx2, . . . ) has
to lie in some set in O, which, being open, must contain a basis set U1× · · ·×Un×Xn× · · ·
containing (x1, x2, . . . ), in particular, it is covered by a single set in O. �

Remark 6.9. Note that the proof relied here on the basis of the product topology. It is
crucial that the basis of the product topology in the infinite case is given by products of
open sets

U1 × U2 × · · · ,
such that, for all but finitely many i, Ui = Xi. Contrast this to the seemingly natural box
topology, which has a basis given by arbitrary products of open sets.

13



7. Connectedness, Homotopy and Fundamental Groups

Discrete groups are totally disconnected. This intuitive statement can be given rigorous
meaning upon definition of what it means for a topological space to be connected. This leads
naturally to the defininition of the fundamental group of a topological space. In a sense,
the fundamental groups measures the connectedness of a topological space by quantifying
the obstruction to continuously deforming one loop on a space to another. The basic idea
is that a space should be regarded as disconnected if it is the union of two or more separate
subspaces.

Definition 7.1. A topological space X is connected if it cannot be written as the disjoint
union of two nonempty open sets8.

Example 7.2. In problems class 2 we will show that the closed interval [a, b] ⊂ R is con-
nected. On the other hand, the rational numbers Q ⊂ R is not a connected topological
space. As for matrix groups, for example SOn(R) is connected, but On(R) is not.

If a space is not connected then it may be decomposed into the union of a collection of
maximal disjoint connected subspaces. The term maximal means that none of these con-
nected subspaces is contained in any larger connected subspace. A space with no non-trivial
connected subsets is known referred to as totally disconnected. We will now march on to
the definition of the fundamental group of a topological space. From now on we will use the
notation I := [0, 1] for the unit interval.

Definition 7.3. A path in a topological space X is a continuous map f : I → X.

The following definition is a notion of equivalence between two paths known as homotopy.
Loosely speaking, we say that two paths are homotopic if one may be continuously deformed
into the other.

Definition 7.4. A homotopy of paths in a topological space X is a continuous map

H : I × I → X

F (s, t) = ft(s),

such that ft(0) = x0 and ft(1) = x1 are independent of t. If there exists a homotopy between
paths we will say that they are homotopic.

The notation ft(s) is intended to suggest that we may think of a homotopy between paths as
a continuous family of paths. The independence condition says that in this family, all paths
have the same “endpoints”.

Example 7.5. A subset Y ⊂ Rn is called convex if, for any two points y1, y2 ∈ Y the line
between them also lies in Y . In this case, any two paths in Y are homotopic. In this case,
the line (segment) between two points y1, y2 ∈ Y may be parametrised explicitly and used
this to give an explicit homotopy map between any two paths u, v : I → Y .

The student may wish to check that this defines an equivalence relation on the set of paths
with fixed endpoints. We want to form a group out of the equivalence classes of certain
paths. This means that we must be able to compose two paths, at least when they have a
common endpoint.

8This is equivalent to saying that the space has no non-trivial clopen subsets.
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Definition 7.6. Say u and v are paths in X such that u(1) = v(0), then we may define the
composite path u · v by

u · v(t) =

{
u(2t) 0 ≤ t ≤ 1

2

v(2t− 1) 1
2
≤ t ≤ 1.

This means that u and v are traversed twice as fact. If the path u (resp. v) in X be a
homotopic to u′ (resp, v′), then it can be shown that the composition u · v is homotopic to
u′ ·v′. The conclusion to be drawn from this is that composition of paths respects homotopy,
and we can define composition on the level of equivalence classes. This is what we desire
for our group! The issue is how we guarantee that one path ends where the next begins? A
sensible answer is to deal only with loops, which we now formally define.

Definition 7.7. A loop based at a point b ∈ X is a path l : I → X such that l(0) = l(1) = b.

Evidently, we may compose two loops based at the same point b ∈ X. The fundamental
group builds a group operation from such compositions.

Definition 7.8. Let X be a topological space with a fixed base point b. The fundamental
group π1(X, b) is defined as the set of homotopy classes of loops based at b with the group
operation induced from composition of paths.

Is this a reasonable definition? More specifically, does this actually define a group? We need
to check the axioms! Firstly, is the operation even well-defined? If so, is composition of
loops associative? Actually, it only needs to be associative up to homotopy, that is, given
loops t, u and v based at b, is t(uv) homotopic to (tu)v? What is the identity of this group
operation? Given a homotopy class of a based loop, what is its inverse?

Lemma 7.9. Let X be a topological space and let b ∈ X be a base point. π1(X, b) is a group
under path composition of homotopy classes of loops.

Proof. See Hatcher’s Algebraic Topology section 1.1, which is freely available online. �

The fundamental group might seem rather abstract and impractical to compute, but it can
be done sometimes! For example, let X ⊆ Rn be a convex set with basepoint x0 ∈ X. The
fundamental group π1(X, x0) is the trivial group, due to the fact that any two loops based
at x0 are homotopic via a linear homotopy. This illustrates the notion of simply connected
topological spaces, which are those with trivial fundamental group, such that, for each pair
of points a, b ∈ X, there exists a path in X from a to b. The existence of paths between all
pairs of points in X is often referred to as path-connected. It can be shown that every path-
connected space is connected. On the other hand, there are examples of topological spaces
which are connected but not path-connected9. The fundamental group, of course, need not
be trivial, for example the fundamental group of the circle turns out to be Z, with the integer
1 corresponding to a loop going once round the circle, and −1 corresponding to its reversal.
Knowing the fundamental group of the circle has some surprising applications. An example
of this is the fundamental theorem of algebra. All of this and more is covered in the module
Algebraic Topology. That said, many spaces do have a trivial fundamental group, including
even generalisations of the circle, such as the 3-sphere S3. On the other hand, the Poincare
conjecture10 states that every simply connected closed 3-manifold is homeomorphic to S3.

9For example, you may wish to google the topologist’s sine curve.
10which is now a theorem!
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